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CAUCtlY PROBLEM FOR EQUATIONS OF INTERNAL WAVES* 

S.Ia. SEKERZH-ZEN'KOVICH 

The Cauchy problem is considered for the equation of internal waves to which reduce 
many problems of the linear theory of waves in a continuously stratified fluid. The 
theorem of uniqueness is proved, and the formula for explicit representation of 
solution in terms of integrals whose kernels contain the obtained in /l/ fundamental 
solution of the internal wave operator and its time derivative are derived. Asymp- 
totic analysis of solution in the "distant zone" is carried out for large values of 
dimensionless time. 

The Cauchy problem for the equation defining the propagation of long gravitational waves 
in a rotating compressible barotropic fluid was first solved and its solution asymptotically 
analyzed by Obukhov /2/ in 1948. A singularity of the internal wave equation is that it is 
insoluble for the higher time deriative of the sought function. Sobolev, while investigating 
unsteady motions of a rotating fluid /3/, was the first to solve the Cauchy problem for an 
equation of this type which differed from the inner wave equation only be the substitution of 
the second-order derivative with respect to one three-dimensional variable for the two-dimen- 
sional Laplace operator. Sobolev's equation and certain of its extensions were considered in 
several papers /4-6/ et al). In /7,8/ the Cauchy problem was considered for a system of 
differential equations in partial derivatives that are insolvable for time derivatives of the 
unknown function. 

Methods and results of indicated investigations are used below. Thus, theuniquenessthe- 
orem is formulated in conformity with that in /8/ with the refinement introduced in /4/, its 
proof is reduced to the test of fulfillment of conditions ofuniquenesstheorem for the equa- 
tion of internal waves presented in /8/ but, also, with one refinement. A short account of 
some results of the paper are given in /9/. 

1. Statement of the problem. We define the operator N of internal waves as fol- 
lows /l/: 

N=$As+NeA~ (1.1) 

where t is the time, As is the three-dimensional Laplace operator of space coordinates x1.x2, 
zQ, A2 is the two-dimensional Laplace operator of horizontal coordinates 211 x2, and N is the 
so-called Brunt-Vviisdld frequency which defines density distribution of an inhomogeneousfluid 
in its unperturbed state. As in /l/, N* = coast> 0 is assumed, which corresponds to the case 
when the density p0 of the quiescent fluid depends only on the vertical coordinate xQ directed 
against gravity acceleration in conformity with the law 

p0 (x2) = p0 (0) esp (--N’g”sd 

Let us consider the classical Cauchy problem for the internal wave equation 

Nu= -$ A,u + NeAau= f(x,t) 

u It=0 = U@(5), -gg1=.,,4 

where f(z, t), u. (z) and u1 (.z) are specified functions, and z =(X1. s,,s,) is a point of the three- 
dimensional Euclidean spaceR". 

2. The theorem of uniqueness of solution of the Cauchy problem. Letthesolu- 
tion of problem (1.2), (1.3) with zero input data and zero right-hand side, whose derivative 
with respect to t and, also, the derivatives with respect to x1 of first and second order do 
not jncrease asI XI+ 00 ataratehigherthan 1 s(',where I> 0. Then that solution is a poly- 
nomial in z,,z2,zQ of power not higher than 1 with coefficients that depend on t and vanish 
when f = 0. 
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Proof. Setting in Eq.(l.P) f = 0 and introducing functions w, = u, W, = -au/&, we re- 
duce it to the equivalent system of equations in wl(r,t) and wl(s,t) 

(2.1) 

System (2.1) belongs to the class of systems considered in /0/. To make use of results 
of that work, we set, as in /S/. 

wk (5, t) = vk (t; 5) exp f--i (2, E)l, k = 1, 2 

(5, f) = XlE.1 + GE* + GE* 

and obtain for the vector function v = (v,,vp) the system of ordinary differential equations 

(2.2) 

Applied to this system, the conditions imposed in the uniqueness theorem in /8/ must be 
such that for tE[O, Tl the conditions must be satisfied: 

1) Elements v~,,,, of the fundamental system of system (2.2) must satisfy the inequalities 

1 ‘km 1 < A i 5 1-7 Q > 0, 1 E 1 < 1 (2.3) 

1 ‘km I d fi 1 5 1’. P > 0, 1 5 ( > 1 

where, and subsequently, A denotes arbitrary constants; 
2) det M(E)must be a polynomial in E, vanishing only when I f 1 = 0, and after the sub- 

stitution Et = &' I t 1 can be represented in the form 

det M = I 5 1’ (a, + a, 1 E 1 + . . . + GG I t 1’)~ %GG # 0 (2.4) 

3) The elements of matrix II 1~~11 = M-IL must satisfy the inequalities 

1 hk 1 < A 1 E I-‘, 1 5 1 < 1; i Pi,k 1 < A 1 

For system (2.2) the inequalities (2.3) ,and (2.5) are 
Indeed, the fundamental system of solutions of system 

Q,l = COSW, VI,* = --v-1 sin vt 
U*,l= V sin vt ) u*,, = CO8 vt 

I’ = N 1 E 1-l &’ + &,=f/* 

which implies (2.3) and q=,p=O. 
Matrix lmkj for system (2.2) is 

51’7 IEl>i 

satisfied. 

(2.5) 

(2.2) is of the form 

which implies (2.5) and t=r=O. 
The determinant of matrix M(g) for system (2.2) is equal ) El* and, consequently, is a 

polynomial in e,, that vanishes only when I E I = 0. It can, however, be represented in the 
form (2.4) with a,~#0 by refining the formulation of condition 2) by explicitly indicating 
the admissibility of the case G = 0, since the proof of the theorem remains valid in this 
case. 

Thus, all conditions imposed in the uniqueness theorem in /S/ are satisfied for system 
(2.11, moreover functions w1 and wt belong to the class for which that theorem was proved.Thus 
the statement of the uniqueness theorem given in /S/ and refined in /4/ is also valid for (2.1). 
In the case of (2.1) it reduces to the statement that system (2.1) satisfies the followingtwo 
systems of equations 

where P,(t, z)and P,(t,x) are polynomials in 5, of power not higher than 1, with coefficients 



760 

dependent on t, which satisfy the initial condition P, (0,~) = 0. 
To complete the proof of the uniqueness theorem fox the internal wave equation we point 

out the solution of the equation considered here agrees with function ml tin the sense in 
which the latter was introduced). 

Corollary. If the conditions of the theorem specify that the solution must approach 
zero as JzJ-+co, while retaining previous requirements as regards the solution derivatives, 
the Cauchy problem (1.2) I (1.3) with zero initial data and zero right-hand side has only a 
zero solution. 

3. Solutionofthe Ckxhy problem for the equation of internal waves. Let 
us assume that the right-hand side of Eq.fl.2) with initial data f1.3) have the following 
properties: function f&t) is continuous in R4 when t>Otihe products of functions Asuofx), 
A&,(x) and their first order derivatives are integrable on 1i Js 1, and that function f(z,5) 

and its derivatives with respect to Xj have the latter property fox every t>O, ~tnd as 
(5 I-to0 t&t?; relations 

Let us derive the problem solution using the apparatus of the theary of generalized func- 
tions. 

First, in conformity with the general scheme /l.O/ we formulate and solve the generalized 
Cauchy problem for Eq.(1.2). 

Let us assume the existence of a classic solution u-(z, t) of problem (1.21, (1.3). We 
introduce functions u*(s,~,) and I* (z,t) that coincide for f>O, respectivelyr with u&z, t) 
and f&t) and are zero for t< 0. 

In the space of generalized functicrns D'(R") function u* (x, t) satisfies the equation 

N U* = f* (5, t) -+ A~u" (x) x 6' (t) -+ A& (5) X 6 (t) (3.1) 

where the right-hand side contains direct products of functions Aa% (4 and A,u, (z) by 6' (t) 
and 6 (t)+ 

Indeed, for all functions rpfo,1) in the space of basic functions D(R&) we have the 
sequence of equalities 

By virtue of properties of functions %fr,t) and 07 (2,s) we can sets = 0 in expressions 
in brackets, and obtain 

(NU, rp) = (j* + A& (s) x 6' (t) + Asu, (8) X 6 (th rP (% t)) 

The generalized Cauchy problem fox the operator of internal waves N with sauxce f* E 
i2’(R*) and initial perturbations ug fx) ED'(R') and Z.+(X) EEL)’ fRY) is understood here as the 
problem of finding the generalized function t8* (r, I) ED (R’f #at vanishes for t<O and 
satisfies Eq.(3.1). 

If functions ffx, t),u, (x) and ul(x) are such that a convolution of the right-hand side 
of Eq.(3.1) with fundamental solution of operator Sexists in D' (RO), a solution of the gen- 
eralized Cauchy problem (3.1) exists in D'(R')and is defined by the formula 

z1* ('z, t) = f” ($1 t) * E (3, t) f [Am (5) X 6 (t)l * w + [&UI (x) x 8 (t)l * E(x+ t) (3.2) 

where the symbol * denotes convolution of functions I and Eis the fundamental solution of the 
internal wave operator, derived in /l/. 

If functions u,(x),u~(x) and f(s, t) possess the properties defined.at the beginning of 
Sect.3, the unique solution of the classical Cauchy problem fl.Z), (1.3) is defined by form- 
ula 
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To prove this we point out, first of all, thatonthe assumptions made above the right- 
hand side of formula (3.2) exists in D'(R') and is expressed by formula (3.3), i.e. the latter 
is the solution of the generalized Cauchy problem (3.1), which holds without the stipulation 
of existence of third order derivatives in IQ,(z),u~(z) and of first order in f(z, t). 

Function u(z,.f) represented by formula (3.3) has for t>o continuous second order deri- 
vatives with respect to zj which, in turn have second order derivatives with respect to t. 
Indeed, it is possible to differentiate once the integrands in (3.3) with respect to +I, since 
the derivatives of E(z-_,t) have integrable singularities of the type ]z-&]-~ and decrease 
as 141-+-00 but not slower than A lk\ba. This property of the fundamental solution is deduced 
from the following representation(*): 

since differentiation of the integrand of the last integral with respect to 21 is admissible. 
The integrands in (3.3) can be differentiated for the second time with respect to zj, 

after the introduction of the new variable of integration n= 2-E. Validity of this operation 
is based on the requirements imposed on A+o(z) and A,u, (x). The differentiation of integrands 
in (3.3) with respect to t can be carried out any number of times. Hence the generalizedsolu- 
tions of Eq.(3.1) has for t>O the required number of classical derivatives for operator .Y; 
it is consequently, the classical solution of Hq.(3.1) when t>O, hence, also, of Eq.(1.2). 
As t-r +0 , function u(z,t) satisfies the initial conditions (1.3), since the first integral 
intheright-hand side of (3.3) is at the limit zero, while it is possible to set t= 0 in the 
integrands of the other two integrals. 

Hence the constructed function ~(z,t) is the solution of problem (1.2), (1.3). 
Moreover, since function (3.3) approaches zero as ]z(--roo and its derivatives appear to 

be, at least, bounded, hence by virtue of the corollary of the proved uniqueness theorem,this 
function is the unique solution of the Cauchy problem (1.21, (1.3). 

Remark. Since input data appear in formula (3.3) in terms of Laplace operators of 
initial functions, hence the indicated fundamental solution may be called the fundamental 
second order solution of the Cauchy problem considered here /4/. By analogy with /4/ we can 
show that such solution has a singularity only at the ooordinate origin and is differentiable 
the required number of times outside that point and uniformly approaches zero with increasing 
distance from the coordinate origin, is unique. 

4. Asymptotic representations of solution of the Cauchy problem and their 
hydrodynamic meaning. We shall derive the asymptotic representation of solution of the 
Cauchy problem (1.2), (1.3), assuming the right-hand side f(z,t) of Eq.(1.2) equal zero. We 
use formula (3.3) and formula (7) from /9/ written in the form 

u(z,t)= 5 [QI (5) exp (%) + Qa (E) exp(iS)] dE (4.1) 
@ 

Qj (%I = 16-‘~-~ IF, ho1 + i (-l)jF, IUJV (%)} 

@'1= - (GE) -(- WY(%)& F,Iu,] = s RI uj(")exr~G(x,%))dx 

It is reasonable to assume that functions ~~(5) and u,(x)satisfy the conditions of ap- 
plicability of formulas used here. 

Let us consider three cases assuming in the first and third of them that uO(x) and Us 
are nonzero only in some region B of diameter d and containing inside the coordinate origin. 

The distant zone.. This zone contain points x for which ]I I/d>> , i.e., in so-called, 
the distant zone. The solution will be investigated for time 
tr<m. 

t in the interval [O, t,] where 

We shall use formula (3.3) which can be represented in the form 

u (2, t) = LJE (Zr t) 
~SAsuo(%)d%+E(x,t)~Aslr,c%)~+R(;,Nt) 

B 

I R 1 <IN 1x1 (~~l/d)l'~l+ + N~I)$ 1 1 &uo(%) 1 d% 
B 

+ 4Nh 1 I &I(%) 1 d%] 

(4.2) 

*) V.A. Gorcdtsov and E.V. Teodorovich, Linear internal waves andexponentiallystratified per- 
fect incompressible fluid. Preprint No.114, Inst. of Problems of Mechanics, Akad. Nauk SSSR, 
Moscow, 1978. 
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From the estimate (4,Z) we obtain on the above assumptions the 
ula for the solution of the Cauchy problam in the distant zone 

Lar&t~ values of Ntand fixed X* Using representation (4.1) 
ables of integration rl 0, p by formulas 

following approximate form- 

and introducing new vari- 

Assuming that functl.ons P,I+,f and E;[u,j do not have singularities when p-: Q, we can 
negl.ect the contribution of points (4.9) to the value of integral (4.8) because of the gres- 
ence of cofficient f3' in the integrands. ConseguentLy, we calculate only the contribution 
of points (4.10) and (4.11) for which we have 

u", = f--Q*" $ZSfi / ix I 

where B?!ssy, is the ResBLan matrix of functions yp 
Taking into account the last formulas we find that as Nt+ 60 with fixed arthe principal 

term of the asymptotic expansion of integral (4.8) is of the form 
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where &F,'[u~] and ImF,'[u,l ( j= 0,l) are, respectively, the real and imaginary parts of 
functions Px[u,] at point (4.10) on the supplementary assumption that ta#O. 

The derived formulas (4.31, (4.7), and (4.12) give a hydrodynamic picture capable of 
fairly clear interpretation which enables us to come to a number of conclusions relative to 
the process propagation of initial perturbations of a perfect incompressible continuously 
stratified fluid with constant Brent- Vhiis~l~ frequency. 

Formula (4.3) implies that in the distant zone the internal wave field generated by in- 
itial perturbations occurring in some region B, have the same structure as the field defined 
by the fundamental solution E(x, t) of the internal wave operator. The difference concerns 
the wave amplitude which is indicated by the presence in (4.3) of amplitude multipliers equal 
to integrals of functions A,%(z) and &Ml(x)taken over region B. 

This conclusion is valid, as seen from estimate (4.2), only from fairly large relations 
1x /id, which increases with increasing time from the instant of initial perturbation action 
to that of observation, and the relation 1 z 1 /d should also increase. 

Formulas (4.7) and (4.12) enable us to assess the nature of the process for largevalues 
of the dimensionless time iVt. 

It follows from (4.12) that in the case of large dimensional time for observation points 
at distances It I= ~a~~, where <f) is fixed and nonzero, from the coordinate origin, progres- 
sive waves similar to those described in /l/ propagate in the fluid in fairly distant regions 
of space. Singularity of these waves is in that they appear to radiate at frequency N from 
vertical semiaxes xa>O and %a< 0 are then absorbed by the horizontal plane ~a =5 0; the 
equal phase surfaces of these waves coincide with the conical surfaces 
The angular velocity of these surfaces is zat-' (xl2 + za2)-"*. 

1 z5 I/ 1 x 1 = con& 

Similar waves were observed in laboratory experiments /12/ where internal waves were 
induced in linearly stratified fluid by the initial perturbation concentrated in very small 
region. It is interesting to note that the photographs 6 andc of Fig.2 in /la/ show that 
regular wave systems recede more and more from the initial perturbation region with increas- 
ing time. 

It follows from (4.7) that in the later stages of development of the process in a fixed 
observation area, fluid motions are of the standing internal wave type with the Brent-V&~lti 
frequency. The amplitude variation of these waves in space is defined by formula (4.6) from 
which it is difficult to draw any conclusions without specific definition of initialfunctions 
ug (x) and u1 (x). 

With increasing time the amplitude of standing waves decreases as (N t)-“* r while at the 
same time the solution of the Cauchy problem for Sobolev's equation diminishes with passing 
time as t-‘/5/. 

The conclusions based formula (4.7) must, obviously, be treated with caution, since dur- 
ing the later stages of a real process the effect of viscosity, which is not taken into ac- 
count in this work, considerably increases. 
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